Multipolar Interband Absorption in a Semiconductor Quantum Dot: Electric Quadrupole Enhancement

ثبت نشده
چکیده

LLE Review, Volume 91 139 Introduction A quantum dot is an artificially created semiconductor structure in the size range of 5 to 100 nm. As a whole, it behaves like an atom since the quantum effects of the confined electrons are enlarged with respect to the interactions of the electrons inside each atom. Since the conception of quantum dots in the early 1980s, the study of their physical properties continues to be a very active field of research. Quantum dots can now be synthesized by various methods and have a multitude of potential technological applications, which include lasers with high optical gain and narrow bandwidth, and wavelength tunability.1 Also, dipole–dipole interaction between neighboring quantum dots is being explored for applications in quantum computing.2 Furthermore, quantum dots are potential singlephoton sources, which may be used to create nonclassical electromagnetic states.3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement

We present a theoretical investigation of a semiconductor quantum dot interacting with a strongly localized optical field as encountered in high-resolution near-field optical microscopy. The strong gradients of these localized fields suggest that higher-order multipolar interactions will affect the standard electric dipole transition rates and selection rules. For a semiconductor quantum dot in...

متن کامل

Multipolar interband absorption in a semiconductor quantum dot. II. Magnetic dipole enhancement

We derive the magnetic dipole selection rules and the magnetic dipole absorption rate for a spherical semiconductor quantum dot. We find that electric dipole and magnetic dipole transitions are exclusive and therefore can be spectrally distinguished. The magnitudes of electric and magnetic absorption rates are compared for excitation with a strongly focused azimuthally polarized beam. It turns ...

متن کامل

Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells

With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...

متن کامل

Quantum theory of the plasmon enhanced Raman scattering effect in hybrid nanotube systems

The quantum theory of resonance Raman scattering is developed for a dipole emitter, the two-level system (TLS), coupled to an interband plasmon resonance of a carbon nanotube (CN) [1]. The model used belongs to a broad class of driven four-level quantum systems [2], with an important distinction that instead of being driven by an external periodic field, scattering by the interacting TLS-CN sys...

متن کامل

Quantization of electromagnetic fields in the presence of a spherical semiconductor quantum dot and spontaneous decay of an excited atom doped in this nanostructure

In this paper we consider electromagnetic field quantization in the presence of a dispersive and absorbing semiconductor quantum dot. By using macroscopic approach and Green's function method, quantization of electromagnetic field is investigated. Interaction of a two-level atom , which is doped in a semiconductor quantum dot, with the quantized field is considered and its spontaneous emission ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002